Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Int J Biol Macromol ; 237: 124169, 2023 May 15.
Article in English | MEDLINE | ID: covidwho-2278039

ABSTRACT

The outbreak of novel Coronavirus, an enduring pandemic declared by WHO, has consequences to an alarming ongoing public health menace which has already claimed several million human lives. In addition to numerous vaccinations and medications for mild to moderate COVID-19 infection, lack of promising medication or therapeutic pharmaceuticals remains a serious concern to counter the ongoing coronavirus infections and to hinder its dreadful spread. Global health emergencies have called for urgency for potential drug discovery and time is the biggest constraint apart from the financial and human resources required for the high throughput drug screening. However, computational screening or in-silico approaches appeared to be an effective and faster approach to discover potential molecules without sacrificing the model animals. Accumulated shreds of evidence on computational studies against viral diseases have revealed significance of in-silico drug discovery approaches especially in the time of urgency. The central role of RdRp in SARS-CoV-2 replication makes it promising drug target to curtain on going infection and its spread. The present study aimed to employ E-pharmacophore-based virtual screening to reveal potent inhibitors of RdRp as potential leads to block the viral replication. An energy-optimised pharmacophore model was generated to screen the Enamine REAL DataBase (RDB). Then, ADME/T profiles were determined to validate the pharmacokinetics and pharmacodynamics properties of the hit compounds. Moreover, High Throughput Virtual Screening (HTVS) and molecular docking (SP & XP) were employed to screen the top hits from pharmacophore-based virtual screening and ADME/T screen. The binding free energies of the top hits were calculated by conducting MM-GBSA analysis followed by MD simulations to determine the stability of molecular interactions between top hits and RdRp protein. These virtual investigations revealed six compounds having binding free energies of -57.498, -45.776, -46.248, -35.67, -25.15 and -24.90 kcal/mol respectively as calculated by the MM-GBSA method. The MD simulation studies confirmed the stability of protein ligand complexes, hence, indicating as potent RdRp inhibitors and are promising candidate drugs to be further validated and translated into clinics in future.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Molecular Docking Simulation , Pharmacophore , RNA-Dependent RNA Polymerase , Molecular Dynamics Simulation
2.
J Biomol Struct Dyn ; : 1-15, 2022 Dec 28.
Article in English | MEDLINE | ID: covidwho-2187087

ABSTRACT

Two novel thiazole derivatives, ethyl 5-((4-fluorophenyl)carbamoyl)-thiazole-4-carboxylate (2b) and ethyl 5-(p-tolylcarbamoyl)thiazole-4-carboxylate (6b) have been synthesized, and their crystal structures determined by X-ray diffraction. To rationalize their structure, reactivity and druggability, we have performed a series of separate, but complementary studies. Hirshfeld surface and 2D-fingerprint plots were first scrutinized to qualitatively unveil all the intermolecular interactions that ensure their crystal packing. Moreover, topological electron density parameters established from the quantum theory of atoms-in-molecules (QTAIM) and Reduced Density Gradient (RDG) were later relied on to characterize the chemical bonding of these species, in terms of the nature and magnitude of noncovalent interactions developed within their monomeric and dimeric forms. In both structures, C-H…O hydrogen bonds are found to be stronger than other noncovalent interactions. Furthermore, H…H bonding contacts and non-conventional C-H…O hydrogen bonds both exhibit a closed shell nature, and play in crucial role in the stability of the novel thiazoles. The isosurfaces in the intermolecular region furnished by NCI molecular diagram signifies the existence of weak noncovalent interactions. Finally, the potential inhibitory activity of the titled compounds and their drug-likeness are demonstrated by molecular docking and ADME-T calculations respectively. Both compounds adhere to the Lipinski's rule of five and present encouraging pharmacokinetic properties and safety profiles.Communicated by Ramaswamy H. Sarma.

3.
J Mol Liq ; 374: 121253, 2023 Mar 15.
Article in English | MEDLINE | ID: covidwho-2181693

ABSTRACT

Combination drugs have been used for several diseases for many years since they produce better therapeutic effects. However, it is still a challenge to discover candidates to form a combination drug. This study aimed to investigate whether using a comprehensive in silico approach to identify novel combination drugs from a Chinese herbal formula is an appropriate and creative strategy. We, therefore, used Toujie Quwen Granules for the main protease (Mpro) of SARS-CoV-2 as an example. We first used molecular docking to identify molecular components of the formula which may inhibit Mpro. Baicalein (HQA004) is the most favorable inhibitory ligand. We also identified a ligand from the other component, cubebin (CHA008), which may act to support the proposed HQA004 inhibitor. Molecular dynamics simulations were then performed to further elucidate the possible mechanism of inhibition by HQA004 and synergistic bioactivity conferred by CHA008. HQA004 bound strongly at the active site and that CHA008 enhanced the contacts between HQA004 and Mpro. However, CHA008 also dynamically interacted at multiple sites, and continued to enhance the stability of HQA004 despite diffusion to a distant site. We proposed that HQA004 acted as a possible inhibitor, and CHA008 served to enhance its effects via allosteric effects at two sites. Additionally, our novel wavelet analysis showed that as a result of CHA008 binding, the dynamics and structure of Mpro were observed to have more subtle changes, demonstrating that the inter-residue contacts within Mpro were disrupted by the synergistic ligand. This work highlighted the molecular mechanism of synergistic effects between different herbs as a result of allosteric crosstalk between two ligands at a protein target, as well as revealed that using the multi-ligand molecular docking, simulation, free energy calculations and wavelet analysis to discover novel combination drugs from a Chinese herbal remedy is an innovative pathway.

4.
J Ayurveda Integr Med ; 13(2): 100557, 2022.
Article in English | MEDLINE | ID: covidwho-1972154

ABSTRACT

Background: The COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as a global pandemic claiming more than 6 million lives worldwide as of 16 March 2022. Till date, no medicine has been developed which is proved to have 100% efficiency in combating against this deadly disease. We focussed on ayurvedic medicines to identify drug-like candidates for treatment and management of COVID-19. Among all ayurvedic medicines, we were interested in Terminalia chebula (T. chebula), as it is known to have antibacterial, antifungal, antiviral, antioxidant and anti-inflammatory properties. Objectives: In this study, we evaluated potential inhibitory effects of phytochemicals from T. chebula against eight structural and functional proteins of SARS-CoV-2. Material and methods: We performed blind molecular docking studies using fifteen phytochemicals from T. chebula against the proteins of SARS-CoV-2. The three-dimensional proteins structures were analysed and potential drug-binding sites were identified. The drug-likeness properties of the ligands were assessed as well. Results: Analysing the docking results by comparing Atomic Contact Energy (ACE) and intermolecular interactions along with assessment of ADME/T properties identified 1,3,6-Trigalloyl glucose (-332.14 ± 55.74 kcal/mol), Beta-Sitosterol (-324.75 ± 36.98 kcal/mol) and Daucosterol (-335.67 ± 104.79 kcal/mol) as most promising candidates which exhibit significantly high inhibition efficiency against all eight protein targets. Conclusions: We believe that our study has the potential to help the scientific communities to develop multi-target drugs from T. chebula to combat against the deadly pathogen of COVID-19, with the support of extensive wet lab analysis.

5.
Energy Nexus ; 6: 100080, 2022 Jun 16.
Article in English | MEDLINE | ID: covidwho-1946138

ABSTRACT

The novel coronavirus 2019 is spreading around the world and causing serious concern. However, there is limited information about novel coronavirus that hinders the design of effective drug. Bioactive compounds are rich source of chemo preventive ingredients. In our present research focuses on identifying and recognizing bioactive chemicals in Lantana camara, by evaluating their potential toward new coronaviruses and confirming the findings using molecular docking, ADMET, network analysis and dynamics investigations.. The spike protein receptor binding domain were docked with 25 identified compounds and 2,4-Ditertbutyl-phenol (-6.3kcal/mol) shows highest docking score, its interactions enhances the increase in binding and helps to identify the biological activity. The ADME/toxicity result shows that all the tested compounds can serve as inhibitors of the enzymes CYP1A2 and CYP2D6. In addition, Molecular dynamics simulations studies with reference inhibitors were carried out to test the stability. This study identifies the possible active molecules against the receptor binding domain of spike protein, which can be further exploited for the treatment of novel coronavirus 2019. The results of the toxicity risk for phytocompounds and their active derivatives showed a moderate to good drug score.

6.
Bratisl Lek Listy ; 123(7): 505-513, 2022.
Article in English | MEDLINE | ID: covidwho-1911881

ABSTRACT

BACKGROUND: A pyrimidine based Schiff base was examined in this report. Structural and spectral characterizations were done with Gaussian software. Active sites of the compound were determined using molecular electrostatic potential (MEP) maps. AIM: We focused to determine whether pyrimidine based Schiff base would be an inhibitor against Omicron of SARS-CoV-2 in silico. RESULTS AND CONCLUSION: As one of the perils the world has seen lately, omicron of SARS-CoV-2, is a complication to be solved. For the sake of that, anti-viral properties of studied pyrimidine based Schiff base compound were investigated with molecular docking calculations. It was found that the quantitative values of the calculated parameters were in the applicable ranges. In accordance with these results, it will be an important guide for future in vitro and in vivo analysis (Tab. 3, Fig. 7, Ref. 70).


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Molecular Docking Simulation , Pyrimidines/pharmacology , Schiff Bases
7.
Journal of the Indian Chemical Society ; : 100416, 2022.
Article in English | ScienceDirect | ID: covidwho-1720355

ABSTRACT

Lung cancer is one of the main reasons for death worldwide. The natural compounds with anti-lung cancer potential are of main interest and are considered a very promising alternative to replace or raise the efficiency of conventional drugs. Diethylstilbestrol, Enterodiol, Enterolactone, Flavokawain A, Flavokawain B, and Flavokawain C compounds showed excellent to good inhibitory activities against studied these enzymes with IC50 values in ranging between 9.66 ± 1.52 to 121.20 ± 15.87 μM for collagenase and 11.06 ± 1.87 to 27.31 ± 4.673 μM for elastase. Also, these compounds had In vitro anti-lung cancer activities. Comparison of the chemical and biological activities of the studied molecules was made by theoretical calculations. Gaussian sofware program was used for chemical activity. The Maestro molecular docking calculations were made to compare their biochemical activities. Afterwards, ADME/T calculations of the molecules were made.

8.
Bratisl Lek Listy ; 122(7): 497-506, 2021.
Article in English | MEDLINE | ID: covidwho-1280847

ABSTRACT

BACKGROUND: It is the SARS-CoV-2 virus, one of the most significant diseases of today's world. Due to the high transmission of this disease, studies are ongoing to discover an inhibitor drug that can stop this disease. In this study, inhibitory drugs used for many diseases were tried to stop the SARS-CoV-2 virus. AIM: In the calculations made, inhibitor molecules for the SARS-CoV-2 virus were calculated by molecular docking method. RESULTS AND CONCLUSION: Inhibitory activities of SARS-CoV-2 virus against spike glycoprotein (PDB ID: 6M0J, 6LZG), main protease (PDB ID: 5RGG, 6WTT), and RNA dependent RNA polymerase (RdRp) (PDB ID: 6YYT, 7BV2) proteins were compared. Then, docking calculations were supported by calculations by MM-PSBA of the inhibitor with the highest activity. Afterwards, it was compared with FDA approved drugs for the SARS-CoV-2 virus. It was found that the Carvedilol molecule was the best against RNA dependent RNA polymerase (RdRp) protein of SARS-CoV-2 (Tab. 4, Fig. 9, Ref. 42).


Subject(s)
COVID-19 , Pharmaceutical Preparations , Antiviral Agents/pharmacology , Humans , Molecular Docking Simulation , SARS-CoV-2
9.
J Biomol Struct Dyn ; 39(18): 7306-7321, 2021 11.
Article in English | MEDLINE | ID: covidwho-726980

ABSTRACT

Coronavirus Disease (COVID-19) is recently declared pandemic (WHO) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The virus was named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), (Coronavirus Disease 2019). Currently, there is no specific drug for the therapy of COVID-19. So, there is a need to develop or find out the new drug from the existing to cure the COVID-19. Identification of a potent inhibitor of Methyltransferase, Endoribonuclease, Phosphatase and Main Protease enzymes of SARS CoV-2 by coumarin derivatives using insilico approach. The in silico studies were performed on maestro 12.0 software (Schrodinger LLC 2019, USA). Two thousand seven hundred fifty-five biologically active coumarin derivative was docked with above receptor proteins of SARS CoV-2. The molecular dynamic simulation of the top one ligand of respected proteins was performed. Top five ligands of each protein were taken for study. Coumarin derivatives actively interact with taken receptors and showed good docking results for Methyltransferase, Endoribonuclease, Phosphatase and Main Protease and top five compounds of each have docking score from -9.00 to -7.97, -8.42 to -6.80, -8.63 to -7.48 and -7.30 to -6.01 kcal/mol, respectively. The docked compounds were showed RMSD and binding stability of simulated ligands are show the potency of ligands against the SARS CoV-2. Our study provides information on drugs that may be a potent inhibitor of COVID-19 infection. Drug repurposing of the available drugs would be great help in the treatment of COVID-19 infection. The combination therapy of the finding may improve inhibitory activity. Communicated by Ramaswamy H. SarmaHighlightsCoronavirus Disease (COVID-19) is recently declared pandemic (WHO) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).In silico virtual screening, docking, ADME, MM-GBSA and MD simulation analysis of coumarin derivatives against Methyltransferase (MTase), Endoribonuclease(endoU), ADP ribose Phosphatase and Main Protease enzyme of SARS CoV-2.All the analysis was performed on Maestro 12.0 Schrodinger software against respective receptors.Top five compounds of coumarin derivatives s docked at the active site of Methyltransferase (MTase), Endoribonuclease(endoU), ADP ribose Phosphatase and protease and top five compounds of each have docking score from -9.00 to -7.97, -8.42 to -6.80, -8.63 to -7.48 and -7.30 to -6.01 kcal/mol, respectively, of SARS CoV-2.These compounds were used to analysis of binding free energy by using the Prime MM-GBSA module.All the compounds showed drug-likeness properties.MD simulation of Proteins and ligands showed binding stability and good RMSD, radius of gyration of protein, coulomb-SR and LJ-SR energy.


Subject(s)
COVID-19 , SARS-CoV-2 , Coumarins , Endoribonucleases , Humans , Methyltransferases , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases , Phosphoric Monoester Hydrolases , Protease Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL